

Martin P. Weides, Michael Marthaler and Alexey V. Ustinov

Karlsruhe Institute of Technology (KIT), Germany

Adiabatic annealing in arrays of superconducting qubits

Investigate scaling of 'quantumness' using highly-coherent qubits

Research interests Quantum Enhanced Optimization

- Use highly-coherent qubits to investigate the behavior of (in general) classically impredictable arrays of quantum bits
- Investigate and evaluate the foundations of superconducting qubit technology regarding scalability, including development of novel concepts for simulation, design and evaluation of quantum arrays
- Control, verify and simulate quantum array containing (at least) dozens of qubits

KIT quantum lab

- Al-AlO_x-Al tunnel junction
- Al, Nb, TiN, NbN thin films

Expertise in phase, flux and transmon qubits

200 nm

- Several quantum measurement setups (e.g. two large volume dilution refrigerators)
 - RF (18) and DC (24) wires, filters, amplifiers
- Simulation software
 - QuTiP for quantum dynamics
 - Q-KIT for measurement
 - CST. Sonnet for EM fields

Quantum circuit control and readout

Time-resolved qubit manipulation

- Heterodyne single-sideband mixing, shaped pulses
- Quantum state tomography
- Clear path to scale and control larger numbers of qubits

Concentric transmon qubit

- Side-selective, inductive σ₂-coupling
- Minimized surface/ interface loss (TLS)
- Reduced radiative decay

Fast (ns) tunability of splitting

Benchmarking, full (x,y,z) tomographic control

Braumüller *et al.* arXiv:1509.08014 (2015) Braumüller *et al.* Phys. Rev. **B** 91, 054523 (2015)

Martin Weides, Ph.D. **Contact**Group leader
Karlsruhe Institut of Technology (KIT)
Martin.Weides@KIT.edu, www.phi.kit.edu/weides
0049-721-608-43503